Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer
نویسندگان
چکیده
Molecular dynamics simulations were employed to investigate the effects of wettability (contact angle) and pitch on nanoscale evaporation and pool boiling heat transfer of a liquid argon thin film on a horizontal copper substrate topped with cubic nano-pillars. The liquid–solid potential was incrementally altered to vary the contact angle between hydrophilic (∼0°) and hydrophobic (∼127°), and the pitch (distance between nano-pillars) was varied between 21.7 and 106.6 Å to observe the resultant effect on boiling heat transfer enhancement. For each contact angle, the superheat was gradually increased to initiate nucleate boiling and eventually pass the critical heat flux (CHF) into the film boiling regime. The CHF increases with pitch, and tends to decrease substantially with increasing contact angle. A maximum overall heat flux of 1.59 � 10 W/m occurs at the largest pitch investigated (106.6 Å), and as the contact angle increases the superheat required to reach the CHF condition also increases. Finally, in certain cases of small pitch and large contact angle, the liquid film was seen to transition to a Cassie–Baxter state, which greatly hindered heat transfer. ARTICLE HISTORY Received 13 September 2017 Accepted 14 November 2017
منابع مشابه
Experimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling
Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...
متن کاملMolecular Dynamics Study of Contact Angle Effect on Maximum Critical Heat Flux in Nano-patterned Pool Boiling
Molecular dynamics (MD) simulations were employed to investigate the effect of wettability (via contact angle variation) on nanoscale pool boiling heat transfer of a liquid argon thin film on a horizontal copper substrate topped with cubic nano-pillars. The liquid-solid potential was incrementally altered in order to vary the contact angle between hydrophilic (θ~63°) and super hydrophobic (θ~15...
متن کاملExperimental Investigation in Pool Boiling Heat Transfer of Pure/Binary Mixtures and Heat Transfer Correlations
Nucleate pool boiling heat transfer coefficient have been experimentally measured on a horizontal rod heater for various liquid binary mixtures. Measurements are based on more than three hundred data points on a wide range of concentrations and heat fluxes. In this investigation, it has been confirmed that the heat transfer coefficient in boiling solutions are regularly less than those in p...
متن کاملA molecular dynamics study of phobic/philic nano‐patterning on pool boiling heat transfer
Heat transfer on the microand nano-scales has quickly become an important area of research and development due to its implications for use in MEMS/NEMS devices and electronics cooling [1–4] in the past decade. As these devices become more powerful with reduced volume/surface they will in turn generate more heat in a small area within a short time period, which needs to be removed as efficiently...
متن کاملExperimental Study on the Effect of Magnetic Field on Critical Heat Flux of Ferrofluid Flow Boiling in a Vertical Tube
In the present work, the critical heat flux measurements were performed for the subcooled flow boiling of pure water and magnetic nanofluids (i.e., water + 0.01 and 0.1 vol.% Fe3O4) in a vertical tube. The effect of applying an external magnetic field on the CHF variation was studied experimentally as well. The obtained results indicated that the subcooled flow boiling CHF in the vertical tub...
متن کامل